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Abstract:

Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through
the "Square Root Spiral” ( also named as “Spiral of Theodorus™ or “Wurzel Spirale* or “Einstein Spiral™ ).
Prime Numbers also clearly accumulate on such spiral graphs.

And the square numbers 4, 9, 16, 25, 36 ... form a highly three-symmetrical system of three spiral graphs,
which divide the square-root-spiral info three equal areas.

A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials.
The Square Root Spiralis a geometrical structure whichis based on the three basic constants: 1, sqrt2 and
T (pi) . and the continuous application of the Pythagorean Theorem of the right angled friangle.

Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci
Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These
proportions are linked to the "golden mean” ( golden section ), which behaves as a self-av oiding-walk-
constant in the lattice-like structure of the square rooft spiral.
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General Section

1 Infroduction to the Square Root Spiral :

The Square Root Spiral ( or “Wheel of Theodorus” or “Einstein Spiral” or “Wurzel Spirale” ) is a very
interesting geometrical structure, in which the square roots of all natural numbers have a clear defined
spatial orientation to each other. This enables the attentive viewer to find many interdependencies
between natural numbers, by applying graphical analysis techniques. Therefore, the square root spiral
should be an important research object for all professionals working in the field of number theory |

Here is a first impressive image of the Square Root Spiral :

FIG.1:
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The most amazing property of the square root spiral is surely the fact that the distance between two
successive winds of the Square Root Spiral quickly strives for the well known geometrical constant 70 Il
Mathematical proof that this statement is correct is shown in Chapter 1 “ The correlation with 7T “ in the

mathematical section.

> Table 1 in the Appendix shows an approximate analysis of the development of the distance
between two successive winds of the Square Root Spiral ( or Einstein Spiral ).
In principle this analysis uses the length difference of two " square root rays” which differ by
nearly exactly one wind of the square root spiral fo each other.

(see example on FIG.1: sqgrt 79 —sqgrt 33 =3.1436... )

Another striking property of the Square Root Spiral is the fact, that the square roots of all square numbers
(4,9, 16,25, 36...)lie on 3 highly symmetrical spiral graphs which divide the square root spiral into three
equal areas ( see FIG.1 : graphs Q1, Q2 and Q3 drawn in green ). For these three graphs the following

rules apply :

1.) The angle betweensuccessive Square Numbers ( on the “EinsteinSpiral” ) is striving for
360°/n  for sart(X) > o
2.) The angle betweenthe Square Numbers on two successive winds of the “EinsteinSpiral”

isstrivingfor 360° -3x(360°/n) forsqarf(X) > «

Proof that these propositions are correct shows Chapter2 “ The Spiral Arms” in the mathematical section.

-



The Square Root Spiral develops from aright angled base triangle ( P1 ) with the two legs ( cathets )
having the length 1, and with the long side ( hypotenuse ) having alength whichis equal to the square
root of 2.

- see FIG.2and 4

The square root spiralis formed by further adding right angled triangles to the base triangle P1 ( see FIG 4)
In this process the longer legs of the next triangles always attach to the hypotenuses of the previous
triangles. And the longer leg of the next friangle always has the same length as the hypotenuse of the
previous triangle, and the shorter leg always has the length 1.

In this way a spiral structure is developingin which the spiral is created by the shorter legs of the friangles
which have the constant length of 1 and where the lengths of the radial rays ( or spokes ) coming from
the centre of this spiral are the square roots of the natural numbers ( sart 2, sart 3, sart 4, sart 5..... ).

> seeFlIG.1 and 4

The special property of thisinfinite chain of tfrianglesis the fact that all triangles are also linked through the
Pythagorean Theorem of the right angled triangle. This means that there is also a logical relationship
between the imaginary square areas which can be linked up with the cathets and hypotenuses of this
infinite chain of triangles ( > all square areas are multiples of the base area 1, and these square areas
represent the natural numbers N =1, 2, 3, 4,.....) > see FIG. 2 and 3. This is animportant property of the
Square Rooft Spiral, which might turn out someday to be a “golden key" to number theory !

2B

FIG. 3: FIG.4:

FIG. 2: / '\/?

FIG. 1 shows the further development of the square root spiral or “Einstein Spiral” if one rectangular
triangle after the other is added to the growing chain of triangles as described in FIG. 4.

For my further analysis | have created a square root spiral consisting of nearly 300 precise constructed
triangles. For this | used the CAD Software SolidW orks. The length of the hypotenuses of these triangles
which represent the square roots from the natural numbers 1 to nearly 300, has an accuracy of 8 places
afterthe decimal point. Therefore, the precision of the square root spiral used for the further analysis can
be consideredto be very high. ( a bare Square Root Spiral can be foundin the Appendix - see FIG.17))

The lengths of the radial rays ( or spokes ) coming from the centre of the square rooft spiral represent the
square roots of the natural numbers ( n={1,2,3,4,..})inreference to the length 1 of the cathets of the
base triangle P1 ( see FIG. 4 ). And the natural numbers themselves are imaginable by the areas of
“imaginary squares", which stayverticallyonthese “square root rays”. > see FIG. 5 (compare with FIG.3 )

Imaginary square areasstaying vertically on the

FIG.5: “squarerootrays”. These square areas represent
thenaturalnumbers N=1,2, 3, 4,...

The base square area with
an area of 1 staysv ertically
on the cathet of the first

/ triangle or on the first

“squarerootray”

Square Root Spiral

_—~—"(Einstein Spiral)

- The “square rootrays” of the EinsteinSpiral can simply be seen as a projection of these spatially
arranged “imaginary square areas”, shown in FIG. 5, onto a two-dimensional plane.
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2 Mathematical description of the Square Root Spiral

constant
Comparing the Square Root Spiral with different angle v elocity
types of spirals ( e.g. logarithmic-, hyperbolic-, )

parabolic- and Archimedes- Spirals ), then the
Square Root Spiral obviously seems to belong to
the Archimedes Spirals.

Vr

constant
radial v elocity

An Archimedes Spiral is the curve (orgraph) of
a point which moves with a constant angle velocity
around the centre of the coordinate system and
af the same time with a constant radial velocity
away from the centre. Orin other words, the radius
of this spiral grows proportional to its rotary angle.

constant distance

between winds
S ———

Archimedes Spiral

In polar coordinate style the definition of an Archimedes Spiral reads as follows :

I'((p) = ap with a = const.

for T —> 00  the SquareRoot Spiral is an
Archimedes Spiral with the r(Q)

following definition :

r(@) = ap +b

\

|
with @ = const. and b = const. w triangle k

The values of the parameters @ and b are

| C2 , .
a=— and b = —— ; with C,> = Square Root Spiral Constant
2 2 C2 = -2.157782996659....
Hence the following formula applies for the Square Root Spiral :
1
r(p) = 5 @ + 1.078891498..... for T —> 00

for T — o0  therefore the growth of the radius of the Square Root Spiral after a full rotation

is striving for TU ( corresponding to the angle of a full rotation whichis 2 TT )

Note : The mathematical definitions shown on this page and on the following page can also
be found eitherin the mathematical section of this paper, orin other studies referring
to the Square Root Spiral. > e.g. a mathematical analysis of the Square Root Spiral is
available on the following website . http://kociemba.org/themen/spirale/spirale.htm

-  Also note that inthe mathematical section of my paper (contributed by Mr Kay
Schoenberger) th isusedinsteadof @, and ® (k) insteadof ¢ (k)

-4 -



Further dependencies in the Square Root Spiral :

If Q@n isthe angle of the nth spiral segment Jn+1
(ortfriangle ) of the Square Rooft Spiral, then
1
tan( ogs ) = — . (ratio counter cathet ) 0 5 ﬁ
\/; cathet

Jn

If the nth triangle is added to the Square Rooft Spiral the growth of the angle is

Oy = arctan[%] ;  Note: angleinradian
n

The totalangle @ (K ) of anumberof K triangles is

k

: 1
¢ (k) = Z (P , or described byanintegral j arctan T dn+ ¢y (k)

n=1 0 n

C2 = Square Root Spiral Constant

The growth of the radius of the Square Root Spiral at a certain triangle 71 is

The radius T of the Square Root Spiradl (i.e. the big cathet of triangle K ) is

¢ (k) = 2\/%+ C2 (k) with limy _,,, ¢;(k) = const. = -2.157782996659

r(k)-= \/E and by converting the above shown equationfor (k) it applies that

_(p _—

r(k(@)) =r(o) = \/i(co—cz(qo))z 5 5

1
Forlarge n it also appliesthat @ z is approximately T and AT has prettywell half
n

of this value, thatis \/_ , what can be proven with the help of a Taylor Sequence.
n



3 The distribution of the square numbers 4, 9, 14, 25, 34, ... on the Square Root Spiral :

The square roots of the square numbers FIG. 6 :
(1), 4,9,16,25,36,49,... liein 3 areas which

are arranged highly symmeftrically around

the center of the square root spiral.

Here the square numbers themselves

can be represented by the mentioned

imaginary square areas which stay

vertically on the "square root rays” /
> seeFIG. 6 ;£

And the square rootfs of the square f
numbers, which are the numbers 1, 2, 3, 4, i
5, 6,... are the “square root rays” which

form the base lines of these imaginary 1
quadratic areas . |

Only the square roofs of the square e
numbers are whole numbers or natural Y
numbers. A
That's why the 3-symmetrical distribution of
these numbers on the square root spiral
must have animportant meaning !

Especially if we consider that the Square
Root Spiral is precisely divided in 3 equal
areas by the square numbers ! 1

But it seems nobody has yet taken notice of
this amazing fact and fried to explainit !l

The " square root rays” of the square numbers are arranged in a way that their outer ends lie on three
spiral graphs ( quadratic polynomials ) as showninFIG. 1 ( = spiral graphs drawnin green ).

3.1 Listing of important properties of the three spiral graphs containing the square numbers :

e The Square Numbers lie on 3 highly symmeftrical spiral graphs with a positive rotation direction
(drawningreen). > seeFIG.1 > These 3 spiral-graphs are defined by the following :

3 Quadratic Polynomials : Ql = 9x2+ 6x+1
Q2 = 9x2+ 12x+ 4
Q3 = 9x2+ 18x+ 9

( > see alsoTable 3-B at page 34 in the Appendix ! )

e The 3 spiralgraphs Q1 - Q3 are arranged in an angle of around 120°to each other ( referring fo
the center of the Square Root Spiral )

e Itapplies: Q1 containsthe square number sequence 1,16, 49,100, 169....
( the square roots of these numbers are : 1,4,7,10,13...> difference=3 )

Q2 containsthe square number sequence 4, 25, 64,121, 196,...
( the square roots of these numbers are : 2,5,8, 11, 14,...> difference=3 )

Q3 contains the square number sequence 9, 36, 81, 144, 225,...
( the square roots of these numbers are : 3, 6,9,12,15,...> difference=3 )

(=2 inthe Q3 - sequence all numbers are also divisibleby 3 !)

- FIG. 15 af page 30 in the Appendix shows the exact geometry of spiral graph Q1 :



The angle betweensuccessive square numbers on the Square Root Spiral ( “EinsteinSpiral™ )
isstrivingfor 360 °/n forsart(X) 2> o > seeFlG.1/FIG.8 & mathematical section )

The angle betweenthe square numbers on two successive winds of the Square Root Spiral
( “EinsteinSpiral” ) isstriving for 360 ° - 3x( 360°/x) forsart(X) = o > seeFIG.1/FIG.8

Calculating the differences of the consecutive square numbers lying on one of the three spiral
arms, and then further calculating the differences of these differences ( > " 2. Differential " ),
resultsinthe constant value 18 for the three spiral graphs ( quadratic polynomials ) Q1 - Q3.

( = see difference valuesin FIG.1 beside the names of the spiral-graphs Q1 - Q3 )

The 3 spiral graphs containing the square numbers divide the square root spiral exactly into
3 equal ares.

Proof that this proposition is correct can be found in Chapter 3 “Area equality” inthe
mathematical section.

The following analysis can also be used as a first approximate proof that this propositionis correct :

First we calculate the areas FIG.7:
which lie between the square
roots of the square numbers.

- see the first three such areas
on the square root spiral marked
in green, yellow and red in FIG. 7

Then we always calculate the
ratio of two such successive
areas.

- see calculation process
shown below the image :

For VX > o theresulting

ratiois striving for the value of 1
at infinity.

This first approximationindicates
that the square root spiral is
precisely divided info 3 equal
areas by the square numbers |

Ad+ASHARHAT +AT
= 777
AT IADIAS 2 932696
AT+A10+,, +A14+A15 _
AA+AE +AE+AT +A8 = 1387148057
A1B+HATT +. +A23+424 = 1p5oise

AL+A10+., +A14+A15

| |

AZEDT+A2B02+  +A2702+4A2703
AZEON+A2E01 4 +A2599 +42600

= 1039998693

AZT0A+A2705+  +AZB07 +42808 _
AZEDT +AZE0Z2+._ +AZ702+A2703 1035214454

| }




For the angles betweenthe “ square root rays” of the square numbers a similar approximationcan be
made as for theareas. > see FIG.1 and FIG. 8 :

FIG. 8 shows the development of the angles betweenthe “square root rays” of the square numbers.
The precislymeasured angles indicate the correctness of the two following statements :

1.) The angle betweensuccessive square numbers on the Square Root Spiral ( “EinsteinSpiral™)
isstrivingfor 360°/n forsart(X) > «

2.) The angle betweenthe square numbers on two successive winds of the Square Root Spiral
( “EinsteinSpiral” )isstrivingfor 360°-3x ( 360°/n) forsqrt(X) > o

Proof that these propositions are correct is shownin Chapter 2 “The Spiral Arms” (> mathematical secfion)

For further mathematical analysis of the spiral-graphs Q1, Q2 and Q3 shown in FIG. 1, |included the
exact geometry of the spiral graph Q1, which contains the square roofts of the square numbers 1, 16, 49,
100, 169,...

This graph together with accurate polar coordinates can be found inthe Appendix > see FIG. 15
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4 The distribution of natural numbers divisible by the prime factors 2, 3, 5, 7, 11, 13, 17,...

In comparison to the square numbers, which lie on three single spiral arms, which are symmetrically
arranged around the center of the Square Root Spiral, all other natural numbers lie on “spiral graph
systems” which consist of more than one spiral arm.

Here the natural numbers divisible by the prime factors 2, 3, 5, 7, 11 lie on more than one of these
mentioned “spiral graph systems” with either a positive rotation direction or a negative rotation direction
respectively. Natural numbers divisible by the prime factor 13 lie on only one spiral graph system with a
positive rotation direction, but on two spiral graph systems with a negative rotation direction. And all
natural numbers divisible by prime factors > 17 lie on only one spiral graph system with either a positive-
or a negative rotation direction.

The followingimage FIG. 9 shows for example the distribution of the natural numbers divisible by 11 on the
Square Rooft Spiral. Here all numbers divisible by 11 are marked in yellow.

4.1 The distribution of natural numbers divisible by the prime factor 11:

FIG.9:
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As mentioned before,...If | am now talking about the arrangement of the numbers divisible by 11 on the
Square Root Spiral, | am actuallyreferring to imaginary square areas, which stay vertical oncertain radial
rays of the square root spiral. The natural numbers divisible by 11, are represented by these imaginary
square areas ( as explained in chapter 1 ). However in this analysis we only consider the projections of
these imaginary square areas ( =radial rays ) onfo a two-dimensional plane, for simplification.

From theimage FIG.9 it is evident that the ( square roots of the ) natural numbers divisible by 11 ( marked
in yellow ) lie on defined spiral graphs which hav e their starting point in or near the centre of the Square
Root Spiral. These spiral graphs have either a positive or a negative rotation direction.

A spiral graph which has a clockwise rotation directionshall be called negative (N) and a spiral graph
which has a counterclockwise rotation directionshall be called positive (P).

The green spiral graphs show the three spiral-graphs which contain the square numbers 4, 9, 16,25, 36, ...
which are drawn forreference only !

-9 .



4.11

4.12

Properties of the spiral graph systems containing the numbers divisible by 11:

The numbers divisible by 11 lie on 2 spiral-graph-systems with a negative rotation direction

( drawnin orange and pink ) and on 2 spiral-graph-systems with a posifive rotation direction

( only one system drawn in light grey lines! ). The 2 negative spiral graphsystems are named N1
and N2 and the 2 positive systems are named P1 and P2 (only P1 isdrawn | ).

> Note: Not all spiral arms of the described spiral-graph-systems are drawn !

The spiral-graph-systems N1 and N2 as well as P1 and P2 lie approximately point-symmetrical to
each other ( inreference to the centre of the square root spiral )

Calculating the differences of the consecutive numbers lying on one of the drawn spiral arms,
and then further calculating the differences of these differences ( 2. Differential ), resultsinthe
constant value 22 forthe positive as well as the negativ e rotating spiral-graphs.

- see difference calculationfor 3 exemplary spiral arms ( one spiral arm per system ) in FIG. 9
beside the names of the spiral-graph-systems N1,N2 and P1. ( > P2-systemnot shown ! )

These 3 exemplary spiral arms are defined by the following quadratic polynomials :
Quadratic Polynomials of exemplary spiral arms :

Mx2+22x-11 =11 (x2+2x-1) >  belongs to N1 - system
Mx2+11x-11 =11 (x2+x-1) >  belongs to N2 - system
1Mx2-22x +44 =11 (x2-2x+4) >  belongs to P1 - system

- Thefollowing example shows how tfo calculate these quadratic polynomials.

Calculation of the quadratic polynomial belonging to one exemplary spiral arm of the N1 -system :

Number sequence N : 22, 77, 154, 253, ... ( > seenumber sequence beside
first difference : 55 77 99 the name of the N1-system )
second difference: 22 22

third difference: 0

Because the third differences are zero ( and this yields a quadratic polynomial ), we can use the
short notation of the NewtonInterpolation Polynomial to calculate the quadratic polynomial :

Here the following assignment is used :

Numbersequence: f() f(2) f(3) f(4)

first difference: fl1,2] f12,3] f13:4]

second difference: 2f[1,2,3]  2f[2,3,4]

withthe short notation of the Newton Interpolation Polynomial we hav e the polynomial :

N(t)=fi+(t—1)f[1,2] + (t — 1)(t — 2)f[1,2,3]
=fH+E=1(fa—fi)+ 3= 1)t =2)(fr —2f2 + f3)

The generator polynomial for N; istherefore:
Ni(t) =224 (t = 1)(T7T — 22) + %(t —1)(t—2)(22—2-77 + 154)

=T1(*4-2t — 1)
or in the general form of quadratic polynomials:

f(X) =11 (x2+2x=1) = 11x2+22x - 11

- Referring to the general quadratic polynomial f(x)= ax2+bx+ ¢ the following
rules apply forthe quadratic polynomials, belonging to the shown spiral-graphs :

Rules for coefficientsa,band c¢: a = equivalent tothe “2.Differential” dividedby 2
( or sequence of coefficients) b > thiscoefficient( orsequence of coefficients)
indicates the system of spiral-graphs it belongs to.
c = describesthe consecutive paralleldistance of the
spiral-graphsin the same system

- Please referto chapter 2 “The Spiral Arms” in the mathematical section for a detailed

mathematical explanation of the spiral arms ( or spiral-graphs ) shown inFIG.1/9/10/11/12

- 10 -



4.2

The distribution of natural numbers divisible by the prime factor 7 :

As a further example the following image FIG.10 shows the distribution of the natural numbers divisible
by 7 on the square rooft spiral. Here all numbers divisible by 7 are marked in yellow.
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Properties of the spiral graph systems containing the numbers divisible by 7:

The numbers divisible by 7 lie on 3 spiral-graph-systems with a negative rotation direction ( drawn
in orange, blue and pink ) and on 3 spiral-graph-systems with a positive rotation direction ( only
one system drawn in light grey lines ! ).

The 3 negative spiral graphsystems are named N1, N2 and N3 and the 3 positive systems are
named P1, P2 and P3 ( only two spiral arms of P1 are drawn | ).

> Note: Not all spiralarms of the described spiral-graph-systems are drawn !

The spiral-graph-systems N1, N2 and N3 as well as P1, P2 and P3 are arranged in an angle of
around 120° foeach other (inreference to the centre of the square root spiral ) , and they seem
torefertothe three-symmetrical arrangement of the 3 spiral-graphs of the square numbers
4,9,16,25,36,49.... (drawningreen).

Calculating the differences of the consecutive numbers lying on one of the drawn spiral arms,
and then further calculating the differences of these differences ( 2. Differential ), resultsinthe
constant value 21 forthe positive as well as the negativerotating spiral-graphs.

- see difference calculationfor 4 exemplary spiral arms ( one spiral arm per system) in FIG. 10
beside the names of the spiral-graph-systems N1,N2, N3 and P1. ( & P2 & P3-systemnot shown ! )

These 4 exemplary spiral arms are defined by the following quadratic polynomials :
Quadratic Polynomials of exemplary spiralarms :

10.5x2 + 24.5x + 14 >  belongs to N1 - system
10.5x2 + 31.5x + 7 >  belongs to N2 - system
10.5x2 + 38.5x + 21 >  Dbelongs to N3 - system
10.5x2 + 10.5x + 28 >  belongs to P1 - system

Natural numbers divisible by a certain prime factor are not distributed in a random way across the square
roof spiral I This is evident from FIG. 10 !

The arrangement of the natural numbers divisible by 7 is a good example which shows the highly
symmetrical distribution of certain number groups across the square root spiral in defined spiral systems.
In this case it is a highly three-symmetrical distribution similar to the distribution of the square numbers
containedin the three spiral-graphs Q1, Q2 and Q3 drawnin green !

- 11 -
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4.3 The distribution of natural numbers divisible by the prime factors 13 and 17 :

The next twoimages show the analysis results regarding the distribution of the natural numbers which are
divisible by the prime factors 13 and 17 : ( = only diagrams shown! )

FIG.11:

L

ﬁ{mg&'%&/ds.zwﬂ

31
ke 3
5
rﬁq." 3;1 %—Ji fvz
isel g“’“
5 \ 52z
¥4
\omak "";,L
| Zy;)—fﬂ 2
|
N
A
;JI:;;{ 2
NNy
FIG. 12 . . ez &1 iret dy o, ik
e o Harry t Hok / /.5 2006
- o <
Numbers divisible by 17 : o [ S
4 e
i” e LA %
\ It 4 / \.l
25, i ity o N o / 22/ / -
< N N z
290 N \\ \ "~ \
S g / .
4 \\ S p\ L f \
‘\:\\:‘ 3 - ||| f . - )
- &
L o ) ‘\‘\ | . \:s)
7l AR N X
I v o
L e : 7
“}s? ~ '/ ap
Ersm |, = SN Z 4 z &
2088 — "
23gh3s % 3 - g
. 1 — 2
i i ——— e 1 J 1 P
£ 7 - o
i i 1 5 e 21
‘4” # e o l‘" i“
2 — 7 7 \ “ e
o
s A 5 7 / / \ NN o
= =X %
3w e % / 7 ) \\\ “;/
z?’ I“L : : S, i1
7 /’ 1 | / AR i .
v / o Ll AARAY \.\\ > !
W\ AL SR T L AR s
. : / o | ] Y
7 : a 1 ; ~
L3 # i 4 fr] \ b1 ™, ; Fr
; J /‘ [ .\\ \ \ ) .
2w # E ;
ars A o il I* i'\ 3¢\ \‘ ke f /
it h / ,—’/ - l ||| ool (73 : 2.3
o ' . \ 2y
3 X / ] /f’ JlIrm i |hg | W || ‘.\ \ £ 5 ”I ,g;)' & i3
& ,a/ - \ ra 233002, ;3
L ( T 3530710
N / | bl )

/
o = =
T

- 12 -




4.4 The distribution of natural numbers divisible by the prime factors 2, 3, 5, 13 and 17 :

In the same way as shown in FIG. 9 and FIG.10 for the natural numbers divisible by 11 or 7, | have also
carried out a detailed analysis for the numbers divisible by the prime factors 2,3,5,13and 17.

These detailed analyses together with high resolution images of the spiral graph systems can be found in
the arXiv - archive under my author name .

- 13 -



5 What causes the described Spiral Graph Systems ?

v

The spiral graphs showninFIG. 1 /9 /10/11 and 12 are caused by quadratic polynomials.
In principle every quadratic polynomial causes a sequence of radii, which takes an archimedian
spiral-like course, when marked on the Square Root Spiral !

And the spiral angle of this so-created spiral graph converges ! *

This is essentially the conclusion of the mathematical analysis.

- explanation see mathematical section : Chapter 2 “ The Spiral Arms”

The exact course of these quadratic polynomials is given by the structure of the Square Root Spiral.
To better understand the whole structure of the Square Root Spiral, the following graph can be used :

The " difference graph fo the X-axis " ( > see FIG. 16 at page 30 in the Appendix, ), shows that the length
of the circumference of the Square Root Spiral actually increases by approximately 20 per wind of the
spiral. > see * 2. Differential " on FIG. 16. The “difference graph to the X-axis” describes the difference of
the increase of the circumference of the square root spiral to the number 20 per wind, inreference to the

x-axis of the graph. This special graph, which represents the quadratic polynomial  f(x) = 10x2 - 14x + 6
can be used for a further analysis of the structure and the growth-behavior of the Square Root Spiral.

As already mentioned in the description of the highly three-symmetrical spiral graphs Q1, Q2 and Q3,
which containthe square roots of the quadratic numbers, there must be a profound logic which governs
the structure of the Square-Root-Spiral | And this logic is definitely not understood yet |

And as a proof for this assumption, | can show a general rule which governs the existence of the
described spiral graph systems as showninFIG? to 12 |

These spiral-graph-systems shall be called “*Number-Group-Spiral-Systems” to indicate that these spiral
graph systems represent certain number groups ( e.g. numbers divisible by 2,3,5,7,11,13,17,...)

Before | explain this rule, | want to emphasize that this rule highly depends on the value of the
2. Differential of the numbers lying on these spiral graphs as shown in the examples in FIG. 9 to 12

As described for the spiral graphs in FIG. 9 and FIG. 10, the * 2. Differential ” of all spiral graphs is constant
and it is equal for all spiral graphs ( quadratic polynomials ) with the same rotation direction.

The " 2. Differential " can easily been calculated by calculating the differences of the consecutive
numbers lying on one of the drawn spiral arms, and thenfurther calculating the differences of these
differences.

> See example in FIG. 10 beside the name of the spiral-graph-sytemN1. In this example the
differences of the numbers 182, 105,49 and 14 on thisspiralarm are 77, 56 and 35. And the
differences of these numbers are all 21. Sothe 2. Differential of this spiral-graph systemis 21.

Withthe help of the NewtonlInterpolationPolynomial and the calculated first and second differences
the quadratic polynomials belonging to these spiral graphs can then be calculated.

5.1 Overall view of the distribution of the natural numbers on the Square Root Spiral

Table 2 on page 32 in the Appendix shows the analysis results referring to the distribution of certain
number groups on defined spiral-graph-systems on the “Square Root Spiral” ( forexample the distribution
of the square numbers or the distribution of natural numbers divisible by the prime factor 11 etc. )

It also shows the number sequences of exemplary spiral arms of the found spiral-graph-systems.

( = number sequences of one spiral arm per spiral-graph-system )

Table 3A & 3B at page 33/34in the Appendix shows the quadratic polynomials of the exemplary spiral
arms shown in Table 2.

This allows a first overall view of the quadratic polynomials, which define the spiral arms in the
spiral-graph-systems shown in FIG. 9 to 12

- 14 -



52 The general rule which determines the existence of the described Spiral Graph Systems

- Thereisan interdependency betweenthe number of spiral-graph-systems with the same rotation
direction , for a certain number group ( = e.g. all numbers divisible by the prime factor 11 )
and the * 2. Differential” belonging to these spiral-graph-systems.

This interdependency can be expressed by the generalformula shown in the head of the following table :

The table below clearly shows, that the discribedinterdependency applies for all analysed number

groups ( numbers divisible by the prime factors 2,3,5,7,11,13and 17 ) :
prime factor X number of spiral graph systems = " 2. Differential *
of number group [ witha negative (N) ora
positive (P) rotationdirection]
2 X 10 (N) = 20
2 X 9 (P) = 18
3 X 7 (N) = 21
3 X 6 (P) = 18
5 X 4 (N orP) = 20
7 X 3 (NorP) = 21
11 X 2 (NorP) = 22
13 X 2 (N) = 26
13 X 1 (P) = 13
17 X 1 (N orP) = 17
19 X 1 (NorP) = 19

( X = multiplication symbol )

Beside fthis general rule which determines the number of spiral-graph-systems , there is also
a mathematical explanation available, which describes the character of single spiral-graphs.
- see Mathematical Secfion “ The Spiral Arms “.

Further there are also some notable differences in the number of spiral-graph-systems with an opposite
rotation direction per number group :

5.3 Listing of differences of the number of spiral-graph-systems with an opposite rotation
direction per number group :

e The natural numbers divisible by 5,7, 11,17 and 19 lie on the same number of spiral-graph-
systems for the negative as well as for the posifive rotation direction. This also seems to be the
case forall natural numbers divisible by prime factors >19.

e The natural numbers divisible by 2, 3 and 13 lie on a different number of spiral-graph-systems for
the negative and the positive rotation direction ( for example natural numbers divisible by the
prime factor 3lie on 7 spiral graph systems with a negativerotationdirectionand on é spiral
graph systems with a positive rotation direction)

e The natural numbers divisible by 2, 3, 5,7 and 11 lie on more than one spiral graph system with
either a positive rotation direction or a negativerotationdirection.

e The natural numbers divisible by prime factors > 17 lie on only one spiral graph system for
either the positive rotation direction or the negativerotationdirection. (2 see example FIG.12 )

Alsointerestingis the fact that the * 2.Differential” of the spiral-graph-systems belonging fo numbers
divisible by a prime factor > 17 isequal tothe prime factoritself.

( e.g. natural numbers divisible by the prime factor 17 lie on one positive and one negativerotating
spiral graph systemwiththe constant number 17 as the * 2.Differential” of the graphs )

- 15 -



6 The distribution of Prime Numbers on the Square Root Spiral :

The distribution of the prime numbers on the square root spiral should intferest every professional
mathematician working in the field of number theory !l

Prime Numbers clearly accumulate on spiral graphs, which run through the square rootf spiral
( Einstein Spiral ) , in a similar fashion as the square numbers, or natural numbers which are divisible by the
same prime factors ( as showninFIG. 9to 12).

And all these “Prime Number Spiral Graphs” represent quadrafic polynomials with special coefficients.

Because | have described the distribution of prime numbers on the Square Root Spiral in more detail in
another paper, | only want to show here one type of spiral-graph-system, which describes the distribution
of the prime numbers on the Square Root Spiral.

It is probably the most impressive one. But there are other such systems existing with a different value of
the " 2. Differential * !

My complete analysis of the Prime Number Spiral Graphs can be found on the arXiv—-archive under my
author name and the following title :

- “ The Ordered Distribution of Prime Numbers on the Square Root Spiral ”

The following picture FIG.13 shows how the prime numbers are clearly distributed on defined spiral-graph
systems which are arranged in a highly symmetrical manner around the centre of the Square Root Spiral.

On the shown 3 Prime-Number-Spiral-Systems ( PNS ) P18-A, P18-C and P18-C, the prime numbers are
located on pairs of spiral arms, which are separated by 3 numbers in between. And two spiral arms of
one such pair of spiral arms, are separated by 1 number in between.

All spiral-graphs of the shown 3 Prime-Number-Spiral-Systems ( PNS ) have a positive rotafion direction ( P )
and the * 2. Differential * of all spiral-graphs is 18.

That's why the first part of the naming of the 3 Prime-Number-Spiral-Systems ( PNS ) is P18.

The 3 spiral-graph-systems A ( drawn in orange ), B ( drawn in pink ) and C ( drawn in blue ) have
further spiral arms. But for clearity there are only around 10 spiral arms drawn per system.

One striking property of all spiral arms is the nonexistence of numbers which are divisible by 2 or 3.

FIG. 13: N
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7 The distribution of Fibonacci Numbers on the Square Root Spiral :

Before | give you an insight into the relationship between the Square Root Spiral and Fibonacci Numbers,
| want to invite you to read my detailed analysis about Fibonacci Numbers. This analysis contains some
interesting facts and some new discov eries about Fibonacci Numbers !

linfend to file this analysis in the arXiv—archive under the following title :

- “The mathematical origin of natural Fibonacci Sequences, and the periodic distribution of
prime factors in these sequences.”

Fibonacci number sequences seem to play animportant role in the structure of the Square Root Spiral.

Fibonacci numbers divide the Square Root Spiral into areas whose proportions strive for a constant ratio
for Vx 2> ®

And ftheratio of the angles of two such successive areas on the Square Root Spiralis striving for a constaont
number at infinity foo ! ( > see explanation below )

In both cases, thisratiois closely connected withthe “golden mean” ( or golden section, or goldenratio )

The occurrence of these ratios, indicates that there is a special relationship between the Square Root
Spiral and the Fibonacci Sequences !

Ratio of the angles between conseculive FibonacciNumbers > Self-Avoiding-Walk-Constant “ SAW-F1“:

If we mark the square roots of the FibonacciNumbers 1, 2,3, 5,8, 13, 21,... on the Square Root Spiral and
then measure the angles betweenthe square roots of the numbers 1 and 2, 2 and 3,3 and 5, 5and 8, 8
and 13, 13 and 21 ...and so on, then we will get the following angles as a result :

o =45°; a2=23526°; a3=156,57°; a4=67,01°; as=88,34°; as=111,40° efc.

Calculated angle ratios :

FIG. 14-A

a2
— =0,784
a4

— =1,604

— =1,185

— =1,318

If we now calculate the ratios of successive angles, as shown abov e, we get the followingratios asresult :
0,784 ; 1,604 ; 1,185 : 1,318 ;1,261 etc

Itis easy tosee that thisratiois quickly approaching a constant number for ‘v:' S5 o

The square root spiral whichl used for my analysis is precisely constructed up to sgrt293 and allows one to
calculate this constant withthe following accuracy::

1,272242 < SAW-F1 < 1,272507

| callthis constant “SAW-F1" whichmeans “self-av oiding-walk constant “ F1
( Here F1 stands for FibonacciSequence 1 ).
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This constant is already known as * self-av oiding-walk-constant 1.272..."
- see book : Mathematical Constants” fromStevenR. Finch

There might still be a bit ofinaccuracy leftinthe calculatedrange of 1,272242 < SAW-F1 < 1,272507
for the angle ratio, because of inaccuraciesin the sums of the angles, calculated by the CAD-System.

Sothe real value of this constant SAW-F1 could finally be slightly higher or lower.

It could turn out, that the true value of this constant SAW-F1 is 1.27201965... !
This number is the square root of the golden mean ( golden section)!

> The golden mean ( goldensection): T = 1,61803399... and “ T = 1.27201965.....

There is a good reason that this could finally be the correct constant! > see next paragraph

Ratio of the areas between consecutive FibonacciNumbers > Area-Ratio-Constant “ARC-F1” :

My reason for the above-mentioned assumption is the value of the constant for the proportions of the
areas between the square roots of the Fibonacci Numbers. Because the proportions of the areas also
strive for a constant which also seems to be linked to the "golden ratio” !

W e mark again the square roots of the Fibonacci Numbers 1,2,3,5,8,13,21,... on the square rooft spiral.
Then we calculate the areas betweenthese marked square roots ( areas marked inred, green, blue etc.)

And if we now calculate the ratios between successive marked areas as shown below, then we get the
followingratios asaresult : 1.4114 , 2.6389 , 1.9644, 2.1512, 2.055 ....

FIG. 14-B : Calculated area ratios :

A2
— = 1,41421
Al
A3+Ad
= 2,63896
A2
A5+A6+A7
— = 1,96442
A3+A4
A8+A9+.. +A11+A12
= 2,15124
AS5+AG+A7
A13+A14+. +A19+A20
= 2,05542
A8+A9+.. +A11+A12
|
| |
1 v

v
The ratio betweensuccessive areas ( as shown above ) is striving for a constant number for v X > o©

| calculatedthis constant with the following accuracy: ARC-F1 = 2.05819 + 0.0003

| call this constant “ARC-F1" which means “area ratio constant* -F1
( Here F1 again stands for FibonacciSequence 1 ).

As mentioned before : This constant is closelyrelated to the golden mean ( golden section) |
Withahigh probabilityitisequalto T x V’C =2.058171... with T = 1,61803399.. (=goldenmean)

There is an interesting study existing to thisconstant T x ¥ T from Mark A. Reynolds, which has the
following title: “The unknown Modulor: the “2.058” Rectangle

This study can be downloaded from this weblink: http://www.springerlink.com/content/w534664pmjx0/
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8 Final comment / References

In a similar way as the bubble chamber helped physicists uncover the secrets of elementary particles,
the square root spiral may help mathematicians uncover the secrets in number theory !

The square root spiral ( or Einstein Spiral ) shows the interdependencies between natural numbers in a
visual way. Therefore, it can be considered to be akind of visual representation of number theory !

Through pure graphical analysis of this amazing structure, the higher logic of the ( spatial ) distribution of
natural numbers ( and special sub-groups like square numbers or prime numbers ) comes to light andis
very easy to grasp, because it is visible !l

That's why mathematicians who read this paper should continue my work and do a more extensive
analysis of the square root spiral, by using a precise computer model of the square root spiral and by
using more adv anced analysis software and analysis techniques, in a similar way as | have !

| haven't found any scientific study which carried out a similar graphical analysis of the ( spatial )
distribution of natural numbers on the square root spiral as shown here in my study. This offers a great
opportunity because there is a lot of unknown land to discover here | And | probably have only just
reached the beach of this new land and made a first clumsy step !

In December 2005 and June 2006 |sent this study (in CD-format ) fo a dozen universities in Germany for
an assessment. But there wasn't muchresponse | That's why | decided to publish my discoveries here.

Prof. S.J. Patterson from the University of Goettingen found my discoveries very interesting.
Prof.S.J. Patterson was especially interested in the spiral graphs which contain the Prime Numbers. These
spiral graphs are special quadratic polynomials, which are of great interest to Prime Number Theory.

For example the quadratic polynomial B3 in FIG. 15-D > B3 = F(x) = 9x2 + 27x + 17 (or 92+ 9x— 1)

or the quadratic polynomial K5 in FIG. 15-F > K5 =F(x) = 11x2 + 25x + 13 (or 11x2+ 3x - 1)
- see my study " The Ordered Distribution of Prime Numbers on the Square Root Spiral "

Prof. Ernst Wilhelm Zink from the Humboldt-University in Berlin also found my study very interesting and he
organized a mathematical analysis of the spiral-graphs shown in this study as well as an analysis of some
propositions which are described in my study referring to the Fibonacci Number Sequences.
This mathematical analysis was carried out by Mr. Kay Schoenberger a student of mathematics on the
Humboldt-University of Berlin. Mr. Kay Schoenberger is currently doing his mathematical dissertation.

On this occasion | want to thank Mr. Kay Schoenberger for the smart proof of my propositions and

Prof. Ernst Wilhelm Zink for his interest in my work, for all his help to organize the mathematical analysis,
which considerably upgraded the v alue of this study, and for his support during the publication process.
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Mathematical Section

1 The Correlation fo 7T

Inthe following part | would like to discuss in detail tw o assertions made by Mr. Hahn in
the brief description. He claims here that

e the distance between two successive winds of the Square Root spiral
convergesto T,

e the angle betweentwo successive integer cathets converges to 2.

Usingrelatively elementary methods, both assertions are proven below.

If ¢, is the angle of the nth spiral segment (in radian), we get

TV |
tan(s,) = /n

(ratfio of counter cathet/ancathet ). From this it follows that
t, = arctan (L—)
AWy

and the angle w(k) betweenthe firstandthe (k+1)th cathetis
k

w(k) =) ta

n=1

As t, represents anonincreasing sequence which tends to zero, the integral
approximation
k

k
w(k) = Z ts = f arctan (ﬁ) dn + ¢1(k)

n=1 0

applies, whereby forthe remainderterm lim ¢;(k) = const.

k—no

The integral can be solved and fromthis we get

w(k) = —arctan(v/k) + k - arctan (TII) + vk + ¢ (k)

—i

As for x> 0 the equality arctan(x) = 5 — arctan() applies, we can also write

b2

w(k) = arctan(—=) — 5 + k - arctan (%) + vk +c1(k)

I:—
‘v vy
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The nextstepisto represent k as a function of w. This certainly does not work directly
but we canrely on the Taylor series

3 1u]

arctan(z) =z — & + & — ...

Then we get the following equality

arcts I R I ? 1
arctan (\j) NG + O (mﬁ?)

Substitute:

wiky=-L 1oL _ koL ST -
w(k) = —= +O(a-u§) s (J) +vk+ci(k)
L= - 4 —_ —

—0 —0

(SIE

=2k + ca(k) (where limg . ca(k) = const.)

klw) = %i w — cz(w))?  ( where limy, .. c3(w) = const.)

Forthe radius 7 (i.e.the big cathet)we have r(k) = VE | thus

2

r(k(w)) =r(w) = \f%{w —cz(w) ) = %{u' — ca(w))

The radius therefore is proportional to the angle (the Archimedean Spiral also has this
property).
The distance a(w) of the spiral arms is the difference of the radii after a full rotation,
therefore

a(w) =r{w+27) —r(w)
= 1 (w4 27 — ez(w +27)) — %[-w — c3(w))
=T — % (ca(w + 2m) — ez(w))
0
Hence we obtain: Im a(w) =

W— OC
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Accordingly for the angle v(k) between the square numbers k2and ( k + 1 )2 the
following applies:

v(k) = w((k+ 1)) — w(k?)
=2k + 1) + ea((k +1)%) — 2k — (k>
=2+ e (k +1)?) — cp(k?

)

\
!

The limit is therefore ;‘,hm (k) =2 = = &

This therefore corresponds exactly with Mr. Hahn's prediction.

| presume that by the not completely clearly defined angle between the integer
cathets of two successive spiral arms Mr. Hahn probably means the angle between

two radii whose length differs by exactly 3. On account of 1 = 3, these forma very
small angle ( not paying attention to the full rotation in between).

From the abov e analysis it immediately follows that this convergesto 21w-6 or

360° — 3 . 3

™

as described by Mr. Hahn.
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2 The Spiral Arms

The pictures FIG. 1 and FIG. 9 to 12 show a graphical analysis of the Square Root Spiral
carried out by Mr. Hahn.

In FIG. 1 Mr. Hahn marked all Square Numbers ( green ) and divided them into three
groups, through which he draw three spiral shaped graphs ( drawn in green lines ).
He made a similar subdivision for other number groups in FIG. 9 to 12.

In FIG.? for example he divided allnumbers, which are divisible by 11, intfo two systems
of spiral graphs ( drawn in orange and pink ).

From the previous part * The Correlation to 1", it follows that two Square Numbers
k2and (k+3)2 enclose a smallangle = 21 -6

Mr. Hahn therefore simply subdivides the set of integer radii into three equivalence

classes, using the classes of Z/3Z .

The set of integer radii can also be partitioned using Z/’n.Z . where n is a natural number.

But this doesn’tresultin similar ** nice " angles.

Because the angle behav es nearly propotional to the radius, we therefore always get
similar spiral arms.

The spiral graphs which contain the numbers divisible by 11 can be analysed in the
same way. Mr. Hahn obviously used the following procedure to construct
these spiral graphs :

He started with a multiple of 11 and then located the closest successor number on the
next wind of the Square Root Spiral. Coming from the center of the Square Root Spiral
the closest successor number which is divisible by 11 would lie a bit on the right ( for
the N-class spiral arms ), or a bit on the left ( for the P-class spiral arms ), on the next
wind of the Square Root Spiral, in reference to the start number. Mr. Hahn connected
these numbers with a graph.

By continuing this graph the further successor numbers can then be located.

The continuing of this graph is made in such a way that nearly a constant spiral angle
is achieved. That there are always corresponding numbers divisible by 11 located on
the Square Root Spiral, through which the graph can be continued, is explained
below.
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In this way a sequence of multiples of 11 is created, which all lie on a defined spiral
arm. For example graph N; drawnin FIG. 9 resultsin the following number sequence :

N, 192, 77,154,253, ...

Mr. Hahn now sets up the following sequences of differences

Sequence N : 22 FiF ] 154 253
first difference : 29 7 99

second difference

and he noticed that all second differences are equal to 22. And it is the same with
the other sequences drawn in FIG. 9.
To explain this fact we go back to the following expression :

k(w) =

(w — c3(w))?

W |

(> seepart1“The Correlationto T *)

The numbers k are prportional to the square of the angle w. This means that N; is probably the
sequence of values of a quadratic polynomial at the natural numbers. The same holds for the other
sequences drawn in FIG. 9 to 12.

A quadraticpolynomial always defines a sequence, where the sequence of the second differences is
constant.

For the proof we need some preliminary explanation: givenarguments ty, ta ..., tn
and values f(ti), ..., f(tn) the Newton's divided differences are defined as follows:

f[t!'j_-.téz] = 'ﬂtil :I_'fu"i'g )

t: t. ] = Flbayseostip_ g 1= Fltig sty ]
f[ R .Lk] X t..i.1 —t-.i,k

With their help the Newton interpolation polynomial

N(t) =f(t1) + (t — t1) ftr, t2] + (¢ — t1)(t — t2) f[t1, 22, ta] + ...

n—1

- H(t A sy ]

=1

can be defined. This fulfils the interpolation conditions

N =ild); t=liwh
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For the sequences given by Mr. Hahn, this yields

sequence: f(1) f(2) f(3) f(4)
first difference: fl1,2] fl2,3] . f13.4]
second difference 2f[1,2,3]  2f[2,3,4]

The third differences are zero, so that the interpolation polynomial has no terms of third
order (and this yields a quadratic polynomial). In general, equdality of the n-th
differencesleads to a polynomial of degree n.

In our case we have with the short notation fi:=f(t;) the polynomial

=f+({E—=1)Ff[L2]+(t—1)(t—2)f[L2,3]
:f1+(-— (fo—f1)+ 3 =1)(t—=2)(fr —2f2+ fa)
The generator polynomial for Ny is therefore

Ni(t) =224 (t —1)(77 — 22) +
=TI 42 = 1)

(t—1)(t—2)(22—2-77 + 154)

NI'—‘

The similarity betw een difference and derivatives mentioned by Mr. Hahn is certainly
visible.

If t1,....t, € [a,0] are pairwise different, andif f € C"~'([a.}]) , then according

to a mean value theoremthere exists a & € [“? b] ,

such that f[-t]_'! s tn] = =1 fm—l‘l )
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A motivation that Mr. Hahn's considered curves Niand Pi are close fo
archimedian spirals?

For this we consider a quadratic polynomial.
p(t) = at* + bt + ¢

For the corresponding angle w (f):=w (p(t)) on the root spiralwe have

w(t) = 2vat2 + bt + ¢ + co(p(t))

Now we considerthe angle v(t):=w(t+1)- w(t) between the radii of two successive
sequence terms. For the limit we get the following.

lim v(t) = lim (2v/p(t +1) — 2v/p(t) + c2(p(t +1)) — c2(p(t))
= lim 2 _\,f'p{f +1) — v I—F’{f}}

—0

t—oo

— lim 2 | 2D -p) J
t—o0 hv’:p{!+1]+ \/ plt)
tno | Vati42atdbtdbtet 144/ at? 4bi4e
= lim2 # : ﬂgﬂmi% ) ]
t—oo | \/t?(a+O L4+ @t+o(l))

; 2a+O(1)
= i3 |e—

= Q,QL_-}V;E

2 /e — 2
The corresponding spiral angle therefore converges to (2v/a mod 27)

The number sequences given by Mr. Hahn are generated from quadratic polynomiails!

The mean value theorem qouted above implies immediately that the second
differencesare 2a. For the example N, and that of the other sequences of mHI’ripIes
of 11, the parameter a must according to the construction be a multiple ¢ -

A corresponding inv estigation for the prime numbers 7, 13 and 17 is shown in Figures
10 to 12 as well as in tabular formin Table 2, 3A and 3B. Here the prime numbers give
rise to a special choice of coefficients of the polynomial corresponding to them.

Final Conclusion of the analysis of the spiral arms shown in FIG.1 and FIG. 9to 12:

Every quadratic polynomial causes a sequence of radii, which takes an archimedian
spiral-like course, when marked on the Square Root Spiral !
And the spiral angle of this so created spiral graph converges !
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3 Area Equality

The following proposition refers to figure 7 in chapter 3.1.

Proposition 1 ) 2, .
iy Sxh L o pemian Mfm A
im ————— =1 for 5(M) = £
M—oc E'(Jlr:l ) { / I n
4 n=A{2
Proof: We consider the function
. ;
gln)=A, = 3\&1.
According to “Euler’s summation formula” we have:
N N N
Z{ffﬁ-] =g(1) +],§;ff;r‘,ld;1‘—|—f(;r — [2])¢'(z)dz.
=t 1 1
Hence we get
3 L fo"u'
N N :
y | 1 3| 1 i
{11} — i = | =2 e o [p] Y~ T A
(1) Z 5V n [3.1“] . —I—_l [ (z — [z])z " 2dxz,
n=M M-1 Wt
and the error termis bounded fromabov e by
N
1 / i 1 [ 1]"‘
— T 2dr — — |2
L. 2 M—1
M—1
Using the definition
(M +1)2 1 (M41)? B
T(M):= Y, An =35 >,
ﬂ:,1f2+1 - Jl:ﬂ.irlz-l-l
by S(M)=T(M) — % we get
. S(M +1) . T(M41)
lim ——— = lim ————

M—co S(M) M—oo T(M)

Now we take (1) into account.

[
|:p||.u

(M+1)2 1
] —I—c*:§[[’;ﬁf—|—1]3—;11'3]—|—r:

M2
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The erroris

2 lpa (M41)? 1
= [TZ]ME ~ g
and ;rh_é following equo’rio_n fin_ishes ;rhe proof'.
. T(M+1) (M 423 — (M 4+1)? 3M2 +9M 4+ 7
lim ———~ = lim

M TTOD) M (M A1 —ME MM 1

g.e.d.
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Appendix :

FIG.15:
oty = Square-Numbers
28 = iral-Gr. 2
28
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Calculated quadratic polynomial
of Difference-Graph:

f(x) = 2(5x2-7x+3) = 10x2-14x+ 6
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Tabelle 1 :

Harry K. Hahn / 20.1.2006

Analysis to the development of the winding-distance of the ,Einstein-Spiral® ( Square Root Spiral )

calculated average

accuracy of average

Length difference of two ,root rays* calculated winding winding-distance winding-distance
e approXimately one | winding-distance | No.: | ofthis winding | o

2T -~Z 3,16836

—~2& -3 3,16693

/29" -5 3,14910

__g_\/_‘/g 2:12;;; 2 3,1592037 99,44255 %

—~AZ -~ 3,16412

—~5T -—~16° 314143

—~53 -7 3,15700

—/58" - —/20° 3,14364

—~63 -~23 3,14142

—/68"-—\/26" 3,14719

~76 -3 3,15003

—~79 -—\/33" 3,14363 3 3,1443455 99,91245 %

—~8Z -—\35" 3,13931

—/97 -—\/45 " 3,14065

—/100 -—\/47" 3,14435

—/103 -—/49" 3,14889

—A13 -—\/56 3,14683

—~27 -—/66" 3,14539

—~38 74 3,14501

-4z -~\77° 3,14141 4 3,14428 99,91453 %
174 -—\/101 3,14103

—/A78 /104 3,14363

—/182 -—\707 3,14666

—/191 -—\/114 3,14320
200 -—\/121 3,14213

—~/209 -—/128 3,14312

~Z3 139 3,14336

228 -TV143 kadnd 5 3,142395 99,97447 %

—/263 -—\/171 3,14058 ’ ’ °

—\/268 -—\175 3,14195

—~273 -—\/178 3,14362

—\/284 -—|188 3,14099

—\/288 -—\/192 3,14359

Note : On the left side of this table, the length-difference of two ,square root rays“ at a time are shown, which differ
by approximately one winding of the ,Square Root Spiral® toeach other ( > see FIG. 1 — Square Root Spiral ).
With every further winding of the spiral, these length-differences ( which represent the winding-distance ), strive

more and more for the constant 7t . This is evident if we compare the average winding-distance with this constant.

At winding No. 5 the average winding-distance is already equal to Tt to around 99,975 % !
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Table 2:

Harry K. Hahn / 5.5.2006

Analysis results referring to the distribution of the natural numbers ( or their square roots respectively )
on defined spiral-graph-systems on the “Square Root Spiral” ( --> see examples in FIG. 9-12)

Number Group

(1,4,9,16,25.....)

Number of Number of Naming The “ 2. Differential “ of the numbers For every found spiral system
The Natural Numbers | SPiral Systems | Spiral Systems _ of the on the SpiraI_Arms results in the one exemplary spiral arm is given :
divisible by : Wlt.h. Wlth. Spiral Sylstlems following values : > Specificati
a positive a negative (P = positive ) --> Specification of the number sequence
direction direction (N = negative )| ( --> see examples on FIG.9, 10 belonging to the chosen exemplary spiral arm
of rotation of rotation System |Exemplary Spiral-arm ( -sequence )
N1 N1 19,76,152,247,361,....
19 ! ! P1 19 P1 19,38,76,133,2009,....
N1 N1 51,136,238,357,....
17 1 1 P1 17 P1 85,136,204,289,....
N1 39,104,195,312,....
13 1 2 N1P'1N2 ;2: NL; N2 ﬁg N2 13,65,143,247, ...
. P1 39,65,104,156,.....
N1 - N2 N1 22,77,154,253,374,....
1 2 2 22 N2 11,55,121,209,319,....
P1-P2 P1 33,44,77,132,2009,....
P2 33,55,99,165,253.....
N1 14,49,105,182,280,....
N2 7,49,112,196,301,....
7 3 3 N1-N3 21 N3 21,70,140,231,343,....
P1-P3 P1 28,49,91,154,238,....
P2 21,35,70,126,203,...
P3 21,28,56,105,175,....
N1 25,80,155,250,365,...
N2 5,45,105,185,285,....
N3 45,110,195,300,....
5 4 4 N1-N4 20 N4 15,65,135,225,335,....
P1-P4 P1 15,40,85,150,235,....
P2 10,20,50,100,170,...
P3 10,25,60,115,190,...
P4 10,30,70,130,210,...
N1 24,69,135,222,330, ...
N2 27,75,144,234,345,...
N3 9,39,90,162,255,...
N4 12,45,99,174,270
N5 15,51,108,186,285, ...
N1 -N7 for N1-N7 : 21 Né 3,21,60,120,201,....
3 6 7 N7 3,24,66,129,213,...
P1-P6 for P1-P6 : 18 P1 21,48,93,156,237,....
P2 12,42,90,156,240,...
P3 9,24,57,108,177,...
P4 3,21,57,111,183, ...
P5 6,27,66,123,198, ...
PG 6,30,72,132,210, ...
N1 2,26,70,134,218, ..
N2 4,30,76,142,228,...
N3 6,34,82,150,238, ...
N4 8,38,88,158,248,...
N5 6,38,90,162,254,...
N6 10,44,98,172,266,...
N7 10,46,102,178,274,...
N8 12,50,108,186,284,...
N1 -N10 for N1-N10 20 N9 16,56,116,196,296,...
2 9 10 N10 20,62,124,206,308,...
P1-P9 for P1-P9 18 P1 8,38,86,152,236,...
P2 2,16,48,98,166,....
P3 6,22,56,108,178,...
P4 4,22,58,112,184,....
P5 2,22,60,116,190, ...
P6 6,28,68,126,202,...
p7 6,30,72,132,210,...
P8 6,14,40,84,146,226,...
P9 12,40,86,150,232,...
Number of Number of Namin « . P
Spiral Arms Spiral Arms of theg The * 2. Differential * of the numbers | gpjira) Arm Number sequence
N ber G with with Spiral Arms on theltsplratLArfm”s Qj’ Q2 Iand _QS (FIG) belonging to Spiral Arm
umber Group a positive a negative results in the following values :
directign directign (Q = quadratic) (> see FIG. 1)
of rotation of rotation
The Square Numbers Q1: 1,16,49,100,169,256,361,484,.....
3 None Q1 to Q3 18 see FIG. 1| Q2: 4,25,64,121,196,289,400,529,

Q3: 9,36,81,144,225,324,441,576,.....
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Table 3-A: Quadratic Polynomials of exemplary Spiral-Graphs of the Number-Group-Spiral-Systems shown in FIG. 9-12 and described in Table 2

Z‘ijstki):lr: 2 D‘ifferential g‘:::i: Numbe.r Sequence of . ( caIcc:;?:c::/:fhr:zgri‘r::“;anlu1mbers ( calcgl:\?:ga\:/:fh?xr:bn;:Islt,arling ( caIccl};?:;avtvii:h?rx:;e‘::Is?;aning ( caIcg;?:(;a\:/iifhzoxrr‘:bn;:Is‘:arting
by of Spiral-Graphs System one exemplary Spiral Graph of this system of the given sequence ) with the 2. Number of the sequence ) with the 3. Number of the sequence ) with the 4. Number of the sequence )
N1 19 , 76 , 152 , 247 , 361 , 494 .. fi(x)= 95x2 + 285x - 19 fo(x)= 95x2 + 475x + 19 f(x)= 95x* + 665 x + 76 | f4(x)= 95x* + 855 x + 152
19 19
P1 19 , 38 , 76 , 133 , 209 , 304 ... fi(x)= 95x2 - 95x + 19 f(x)= 95x* + 95x + 19 fa(x)= 95x> + 285 x + 38 | f4(x)= 95x> + 475 x + 76
N1 51 , 136 , 238 , 357 , 493 , 646 ... fi(x)= 85x* + 595x - 17 f(x)= 85x2 + 765x + 51 fa(x)= 85x> + 935 x + 136 | f4(x)= 85x> + 111 x + 238
17 17
P1 34 , 51 , 8 , 136 , 204 , 289 ... fi(x)= 85x* - 85x + 34 f(x)= 85x2 + 85x + 34 f3(x)= 85x2 + 255 x + 51 fa(x)= 85x* + 425 x + 85
N1 39 , 104 , 195 , 312 , 455 , 624 ... fix)= 13x2 + 26x +0 f(x)= 13x%2 + 520x + 39 fax)= 13x2 + 780 x + 104 | f4(x)= 13x2 + 104 x + 195
26 :for N1-N2
13 N2 13 , 65 , 143 , 247 , 377 , 533 .. fix)= 13x2 + 13x - 13 f(x)= 13x%2 + 390x + 13 fa(x)= 13x2 + 650 x + 65 | fo(x)= 13x2 + 91 x + 143
13 :for P1
P1 26 , 39 , 65 , 104 , 156 , 221 ... fi(x)= 65x> - 65x + 26 f(x)= 65x* + 65x + 26 f(x)= 65x2 + 195 x + 39 | f,(x)= 65x> + 325 x + 65
N1 22 , 77 , 154 , 253 , 374 , 517 ... fi(x)= 11x2 + 22x - 11 fo(x)= 11x2 + 44x + 22 fa(x)= 11x2 + 66x + 77 fa(x)= 11x> + 88x + 154
N2 11 , 55 , 121 , 209 , 319 , 451 . fx)= 11x + 11x - 11 fo(x)= 11x2 + 33x + 11 fa(x)= 11x2 + 55x + 55 fa(x)= 11x> + 77x + 121
1 22
P1 33 , 44 , 77 , 132, 209 , 308 ... fix)= 11x%2 - 22x + 44 fbx)= 11x% + 0x + 33 fa(x)= 11x2 + 22x + 44 | f,(x)= 11x2 + 44x + 77
P2 33 , 55 , 99 , 165 , 253 , 363 ... fix)= 11x2 - 11x + 33 f(x)= 11x* + 11x + 33 fa(x)= 11x2 + 33x + 55 | f,(x)= 11x> + 55x + 99
N1 14 , 49 , 105, 182, 280 , 399 ... fi(x)= 105x> + 35x + 0 fp(X)= 105x> + 245x + 14 f(x)= 105x* + 455x + 49 | f,(x)= 105x> + 665x + 105
N2 7 , 49 , 112, 196, 301, 427 ... fi(x)= 105x> + 105x - 14 fa(x)=105x% + 315x + 7 fa(x)= 10,5x* + 525x + 49 fa(x)= 105x> + 735x + 112
N3 21, 70 , 140, 231, 343, 476 .. fi(x)= 105x*> + 175x - 7 fp(x)=105x2 + 385x + 21 f(x)= 105x*> + 595x + 70 | f,(x)= 105x> + 805x + 140
7 21
P1 28 , 49 , 91 , 154, 238, 343 . fi(x)= 105x* - 105x + 28 f,(x)= 105x2 + 105x + 28 fa(x)= 105x*> + 315x + 49 | f,(x)= 105x> + 525x + 91
P2 21, 3 , 70 , 126, 203, 301 ... fi(x)= 105x*> - 175x + 28 fa(x)=105x> + 35x + 21 f3(x)= 105x> + 245x + 35 fa(x)= 105x> + 455x + 70
P3 21, 28 , 5 , 105, 175, 266 ,.... fi(x)= 105x> - 245x + 35 f,(x)=105x2 + 35x + 21 f(x)= 105x*> + 175x + 28 | f,(x)= 105x> + 385x + 56
N1 25 , 80 , 155, 250 , 365, 500 ,... fi(x)= 10x2 + 25x - 10 fp(x)= 10x2 + 45x + 25 fa(x)= 10x> + 65x + 80 [ f,(x)= 10x> + 8x + 155
N2 5 , 45 , 105, 185, 285, 405 ... fi(x)= 10x2 + 10x - 15 f(x)= 10x2 + 30x + 5 fa(x)= 10x2 + 50x + 45 | f,(x)= 10x> + 70x + 105
N3 45 , 110 , 195, 300 , 425, 570 ... fix)= 10x2 + 35x + O f(x)= 10x%2 + 55x + 45 f(x)= 10x2 + 75x + 10| f,(x)= 10x> + 95x + 195
N4 15 , 65 , 135, 225, 335, 465 .. fi(x)= 10x2 + 20x + 15 f(x)= 10x* + 40x + 15 f(x)= 10x2 + 60x + 65 | f4(x)= 10x> + 80x + 135
5 20
P1 15 , 40 , 85 , 150, 235, 340 ... fi(x)= 10x2 - 5x + 10 f(x)= 10x> + 15x + 15 fax)= 10x2 + 35x + 40 | f,(x)= 10x2 + 55x + 85
P2 10 , 20 , 50 , 100 , 170 , 260 ... fi(x)= 10x* - 20x + 20 fo(x)= 10x%> + 0x + 10 fa(x)= 10x* + 20x + 20 fa,(x)= 10x> + 40x + 50
P3 0 , 25 , 60 , 115, 190 , 285 .. fix)= 10x2 - 15x + 15 f(x)= 10x% + 5x + 10 fa(x)= 10x2 + 25x + 25 fa(x)= 10x> + 45x + 60
P4 10 , 30 , 70, 130, 210, 310 ,... fi(x)= 10x2 - 10x + 10 f(x)= 10x> + 10x + 10 fa(x)= 10x2 + 30x + 30 | f4(x)= 10x* + 50x + 70
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Table 3-B: Quadratic Polynomials of exemplary Spiral-Graphs of the Number-Group-Spiral-Systems shown in FIG. 9-12 and described in Table 2

::lvr::ljzlres 2 D.ifferential Zl::;: N“mbe.' Sequence of . ( calcﬁll;?:;a\ntllifhi:;)/fri‘rz:n?:ar:u1mbers ( calc?li:tl:(;?/\tllifhF;Orllinmot?;r:lsfarting ( caIc?ll;:;::/li::hZoxl:l;:‘a:'zls::aning ( caIc?ll;:;a\:/ii::hPfiorlﬂl:l;::':ls‘:aning
by of Spiral-Graphs | o \om one exemplary Spiral Graph of this system of the given sequence ) with the 2. Number of the sequence ) with the 3. Number of the sequence ) with the 4. Number of the sequence )

N1 24, 69 , 135, 222 , 330 , 459 ... fi(x)= 105x> + 135x + 0 fo(X)= 10,5 x> + 345x + 24 fa(x)= 105 x> + 555x + 69 fy(X)= 105x> + 765x + 135

N2 27 , 75 , 144, 234, 345 477 .. fi(x)= 105x2 + 165x + 0 fo(X)= 105 x> + 375x + 27 fa(x)= 105x> + 585x + 75 fa(X)= 105 x> + 795x + 144

N3 9 , 39, 9 , 162, 255, 369 ,... fi(x)= 105x2 - 15x + 0 f,(x)= 105x% + 195x + 9 f3(x)= 105x2 + 405x + 39 | f,(x)= 105x2 + 615x + 90

N4 12, 45 , 99 , 174 , 270 , 387 ... fi(x)= 105x> + 15x + 0 fo(X)= 1056 x> + 225x + 12 fa(X)= 105> + 435x + 45 fa(X)= 105x* + 645x + 99

N5 15 , 51 , 108, 186 , 285 , 405 ... fi(x)= 105x> + 45x + 0 f,(x)= 105> + 255x + 15 fa(x)= 105x2 + 465x + 51 fa(x)= 105x2 + 675x + 108

21 : for N1 to N7 N6 3, 21, 60, 120, 201, 303 ... fi(x)= 105x%> - 135x + 6 fo(x)=105x> + 75x + 3 fa(x)= 105x> + 285x + 21 fa(x)= 105x> + 495x + 60

3 N7 3, 24, 66, 129, 213, 318 ,.. fi(x)= 105x2 - 105x + 3 fo(x)= 10562 + 105x + 3 fa(x)= 105> + 315x + 24 fa(X)= 1052 + 525x + 66
18 :forP1to P6 P1 12 21, 48, 93 , 156 , 237 . fix)=  9x2 - 18x + 21 fpb(x)=  9x2 + 0x + 12 0= 9x2 + 18x + 21 f,(X)= 9x2 + 36x + 48

P2 12, 42 , 90 , 156 , 240 , 342 . fx)=  9x2 + 3x + 0 foX)=  9x2 + 21x + 12 fa(x)=  9x2 + 39x + 42 fa(x)= 9x2 + 57x + 90

P3 9 , 24 , 57, 108, 177 , 264 .. fix)=  9x* - 12x + 12 fo(x)=  9x2 + 6x + 9 fa(x)= 9x* + 24x + 24 fax)=  9x*> + 42x + 57

P4 3, 21, 57, 111, 183, 273 ... fix)=  9x2 - 9x + 3 fx)= 9x2 + 9x + 3 fa(x)=  9x2 + 27x + 21 fa(x)= 9x* + 45x + 57

P5 6 27 , 66 , 123, 198 , 291 . fix)=  9x2 - 6x + 3 fb(x)= 9x2 + 12x + 6 fa(x)=  9x* + 30x + 27 fa(x)= 9x2 + 48x + 66

P6 6 , 30 , 72, 132, 210, 306 ... fx)=  9x2 - 3x + 0 fx)= 9x> + 15x + 6 fa(x)= 9x2 + 33x + 30 fa(x)=  9x2 + B1x + 72

N1 2, 26, 70, 134, 218, fix)= 10x%* - 6x - 2 fo(x)= 10x2 + 14x + 2 fa(x)= 10x> + 34x + 26 fax)= 10x> + 5B4x + 70

N2 4 , 30 , 76 , 142, 228 , fix)= 10x2 - 4x - 2 L(x)= 10x2 + 16x + 4 ()= 10x2 + 36x + 30 | f,(X)= 10x2 + 56x + 76

N3 6 34 , 8 , 150 , 238 , fi(x)= 10x% - 2x - 2 fo(x)= 10x*> + 18x + 6 fa(x)= 10x%> + 38x + 34 fa(x)= 10x*> + 58x + 82

N4 8 , 38 , 88 , 158 , 248 , 358 .. fix)= 10x* + 0x - 2 fo(x)= 10x2 + 20x + 8 fa(x)= 10x> + 40x + 38 fa(x)= 10x> + 60x + 88

N5 6 , 38 , 90 , 162, 254 , 366 ,... fix)= 10x2 + 2x - 6 ,b(x)= 10x2 + 22x + 6 ()= 10x2 + 42x + 38 | f,(x)= 10x2 + 62x + 90

N6 10 , 44 , 98 , 172, 266 , 380 ... fi(x)= 10x% + 4x - 4 fo(x)= 10x2 + 24x + 10 fa(x)= 10x> + 44x + 44 fa(x)= 10x2 + 64x + 98

N7 10 , 46 , 102, 178 , 274 , 390 .. fix)= 10x2 + 6x - 6 fo(x)= 10x2 + 26x + 10 fa(x)= 10x> + 46x + 46 fa(x)= 10x*> + 66x + 102

N8 12, 50 , 108, 186 , 284 , 402 ... fi(x)= 10x* + 8x - 6 fo(x)= 10x> + 28x + 12 fa(x)= 10x2 + 48x + 50 fa(x)= 10x2 + 68x + 108

20 : for N1 to N10 N9 16 , 56 , 116, 196 , 296 , 416 ... fi(x)= 10x2 + 10x - 4 fo(x)= 10x> + 30x + 16 fa(x)= 10x2 + 50x + 56 fa(x)= 10x2 + 70x + 116

2 N10 20 , 62 , 124, 206 , 308 , 430 ... fix)= 10x2 + 12x - 2 f,b(x)= 10x2 + 32x + 20 ()= 10x2 + 52x + 62 | f,(x)= 10x2 + 72x + 124
18 : for P1to P9 P1 8 , 38 , 8 , 152, 236, 338 ,... fix)= 9x* + 3x - 4 fox)=  9x*> + 21x + 8 fa(x)= 9x2 + 39x + 38 f,x)= 9x2 + 57x + 86

P2 2 16 , 48 , 98 , 166 , 252 .. fix)=  9x2 - 13x + 6 fp(x)=  9x2 + 5x + 2 fa(x)= 9x2 + 23x + 16 fa(x)=  9x* + 41x + 48

P3 6 , 22 , 5 , 108, 178 , 266 ... fx)=  9x%2 - 11x + 8 fx)= 9x2 + 7x + 6 fa(x)= 9x2 + 25x + 22 fa(x)= 9x2 + 43x + 56

P4 4, 22, 58, 112, 184 , 274 . fix)= 9x2 - 9x + 4 L(x)= 9x2 + 9x + 4 ()= 9x2 + 27x + 22 | f,(x)= 9x2 + 45x + 58

P5 2, 22, 60, 116, 190 , 282 ... fix)= 9x2 - 7x + 0 fbx)=  9x2 + 11x + 2 fax)=  9x2 + 29x + 22 | f,(x)= 9x2 + 47x + 60

P6 6 28 , 68 , 126, 202 , 296 ,.... fix)=  9x* - 5x + 2 f(x)= 9x2 + 13x + 6 fa(x)= 9x2 + 31x + 28 fa(x)= 9x* + 49x + 68

P7 6 , 30 , 72, 132, 210, 306 ... fx)=  9x* - 3x + 0 fx)= 9x2 + 15x + 6 fa(x)=  9x2 + 33x + 30 fa(x)= 9x2 + Blx + 72

P8 6 , 14 , 40 , 84 , 146 , 226 ,... fix)= 9x2 - 19x + 16 Lb(x)= 9x2 - 1x + 6 0= 9x2 + 17x + 14 | f,(x)= 9x2 + 35x + 40

P9 12 , 40 , 8 , 150 , 232, 332 ,... fi (x) = 9x% + 1x + 2 fy (x) = 9x% + 19x + 12 fa (x) = 9x% + 37x + 40 fy (x) = 9x> + 55x + 86
Nsl?IJIJ;\;:S ofz.sgii::-rérr‘;?:\s ZPRIAR:II-; S:il::l‘ ':;;:ﬁgl::‘:c(;; :L:ihgs ( calc?ll:t‘:cﬁ:{lifhiﬁéyf?;:na‘lar:u1mbers ( (.:alc%;?::\i:llifhzor:{lr:;:r:Isfaning ( ;alcgr;?:;‘z\l:/li:hzom‘:glrzls::arting ( ;alc(L)JIl::drE\i:/li:hzom‘:lzlr:Is‘:arting
( containing the Square Numbers ) of the given sequence ) with the 2. Number of the sequence ) with the 3. Number of the sequence ) with the 4. Number of the sequence )

Q1 1 16 , 49 , 100 , 169 , 256 .. fix)= 9 - 12x +4 fox)= 9% + 6x +1 fa(x)= 9 + 24 x + 16 fax)= 9 X + 42 x + 49

4,9, 16, 25,.. 18 Q2 4 , 25 , 64 , 121 , 196 , 289 ... f1 (x) = 9 ¢ - 6 x + 1 fox)= 9 + 12x +4 fa(x)= 9 + 30 x + 25 fax)= 9 + 48 x + 64
Q3 9 36 , 81 , 144 , 225 , 324 .. fix)= 9x¥ + 0x +0 fa(x)= 9 + 18x +9 fa(x)= 9 + 36 x + 36 fax)= 9 X + 54 x + 81




FIG. 17 : bare Square Root Spiral
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